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transmission system. The method’s feasibility was confirmed with a Il. THEORY
design example. The actual composite multilayer glass characteristicget ys consider a transmission line with time—harmonic (complex)

depend on the accuracy of the thickness and refractive index Qfirent () and voltagel’(«) functions satisfying the generalized
the layers, especially for cases where a large number of layers ggsmission-line equations

involved. (®) ( )
d (U(z a z\(U ¢)> _ <u‘(:v ) 1
REFERENCES dx <I(’7) ) * <’” b) <I(”’) i(x) W

[1] H. A. Macleod, Thin-Film Optical Filters. New York: Elsevier, 1969. Here we denote the dlstrlt?ute.*d transml$3|on_llne circuit parameters
[2] A. Thelen, “Design of multi-layer interference filter,” Bhysics of Thin bY @, 2, y, b and the distributed series generator voltage and
Films, Haas and R. E. Thun, Eds. New York: Academic, vol. 5, 196%hunt generator current functions kyz) and i(x), respectively.

[3] W. K. Chen,Passive and Active Filters—Theory and ImplementationS'he quantitiesz and y are the distributed series impedance and

New York: Wiley, 1986. L - . shunt admittance, respectively.andb are parameters defining the
[4] W. J. Zhang and A. Rong, “A study of the iterative elliptic-polarized

measurement of optical parameters of multi-layered thin filnds,” Symmetr_y and reciprocity of the Ilng (8l- In.facdi, = b implies
Beijing Univ. Aeronautics Astronauticspl. 4, pp. 111, 1993. that the impedance parameters of a line section satisfy the symmetry
condition Z;; = Zs2. On the other handg = —b implies that
the impedance parameters satisfy. = Z2;, whence the line is
reciprocal [11, p. 158]. The symmetric and reciprocal line with
a = b = 0 is called the conventional transmission line.

. . . It was also seen [8] that the line is lossless if the parameters satisfy
Duality Transformation for Nonreciprocal

and Nonsymmetric Transmission Lines ==z y=—y a"=-b V= —a. 2)
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2 2

a=s+d b=s—d s= 3)

Abstract—Duality transformation is introduced to the theory of gen- - . . o
eralized (nonreciprocal and nonsymmetric) transmission lines making the quantities:, y, a”QS_afe seen to be imaginary whilgis real
it possible to find solutions to problems in terms of solutions to dual for a lossless transmission line.
problems without having to go through the solution process. The gen-
eralized transmission lines have emerged when more general media . .
have been introduced to classical waveguide geometries, for example,A' The Duality Transformation

microstrip lines on chiral substrates. It is seen that there actually exist two The duality transformation is a linear map of the voltage—current
duality transformations and the self-dual voltage and current solutions pair
are propagating waves in the transmission line. The transformation can

be, e.g., applied to transform a nonsymmetric transmission line to a Uy, U A B U
symmetric one. <Id‘> - D<I> - <C D) <I> @

whereA - - - D are constant (complex) scalar quantities. Operating (1)
by the matrixD, we can write the transmission-line equation for the

Duality transformation in electromagnetic theory is based qansformed line. The transformation rules for the sources are, then
the symmetry of electric and magnetic quantities in the Maxwell

equations. It can be applied to obtain a solution for the dual problem <”d> — <A B ) <“> (5)

through transforming the solution of the original problem [1]. A ¢ DJ\i

careful study for fields and_ sources in |sc_)trop|c media s_,howed ﬂ?r]id those for the line parameters

there are always two duality transformations of equal importance,

[2], [3], and that there exist self-dual quantities invariant to the trans- aa za\ _[{A B\f{a z\[{A B -

formation, which have special physical significance. The theory was ya ba)  \C DJ/\y b)\C D : ®)

later generalized to bi-isotropic media [4] and certain bi-anisotropic ) ] ) ) o

media [5]. Let us require that the duality transformation be an involution, i.e.,
In circuit theory, the concept of duality has been applied to tran& ' = D. [3]. This gives a set of conditions for the parameters

form voltages to currents, impedances to admittances, inductandes * D~ Ignoring the trivial transformation® = +7, where

to capacitances, and series circuits to parallel circuits, for exam@ignotes the unit matrix, the conditions are

[6], [7]. In transmission-line theory, the line parameters are changed A=-D=VIi-BC

. INTRODUCTION

td

correspondingly in the transformation. It is the purpose of this paper )
to define the duality transformation to the generalized transmissiqfplying det D = —1. Let us introduce the notation

line theory introduced recently [8], [9], applicable, e.g., to planar

transmission lines on chiral and bi-isotropic substrates [10]. A=-D=sinf B=rcosf C=r1 'cosf (8)

. ) . ) which takes care of the condition (7) and leaves us two parameters,
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a0, 20, Yo, bo be transformed to itself. This condition can be writterwith

as the matrix equation: Ug 1 ) U
(i) =342 ()

sin # T cosf a0  Zo
7 cos® —sind J\yo bo _ _EF <7i —bo 0 ) <U> (22)

_fao 2o sin 6 7 cos 6 ©) Y+ - Yo Y+ — do I
T \yo bo 7 Ycos# —sinb )’ e = sk /Zoyo + 42 (23)

The four component equations can be seen to give twice the same bgois readily seen. Outside the sources, the self-dual voltage and
current satisfy

2 Zo ag — bo Tdo
TT=— tanf =171 = — (10) _
yo 220 =0 Ur =211y, Zi = l(do +\/z0p0 +d3) = g ~bo (24)
Yo Yo
which can be solved as 1 - —a
Lo =YilUs, Yi= —(—do= \/z0p0 +d2) = E—20 (25)
=t 0 tanpe =+ D 11 0 =0
== yio anvE = JZoyo (11) Thus, the transmission-line equations for the self-dual quantities

outside the sources are
Thus, there are actually two duality transformations that satisfy the d (U N U
w()=-( )

given conditions de \ I+ Yo bo )\ I+

+1 do  zo ap + zoYx 0 Uy
Di=——— . 12 =—
. Vzoyo + d3 <y0 d0> (12 < 0 bo +yoZ+ )\ I+

.
The two duality transformation® andD_ differ only by the sign. = =7+ <L[I ) (26)
The transformation formulas for the line parameters are the same
for both signs and can be written as where Z; and Y1 are the wave impedances and admittances,
respectively. The expressiong. defined in (23) represent complex
84 =5 (13) propagation coefficients. The self-dual voltage and current satisfy
da d z Y . the same first-order differential equations and their solutions are
=- cos 26 + 4+ —— | sin 26 (14) . .
Ny NEYT <2ZO 2y0> exponential functions:
2 d sin 26 — = sin® ¢ + Y cos® g (15) Jx(2) = Us(0)e "= Ii(x) = Ix(0)e "= (27)
’N Y k;yo io '90 Thus, the self-dual voltage and current functions are waves propagat-
gd _ sin 26 + = cos® 6 — Y sin? 6. (16) ing in opposite directions on the transmission line.
Yo “oYo =0 Yo From the above expressions it is seen that the parameteasd

by affect the wave impedances. only through their difference,
i.e., through the parametel,. On the other hand, the propagation
coefficientsy. depend both oy and dy. For dy = 0, the wave

In terms of the reference-line parameters we have

_ do(zyo + yzo + ddo) — zoyod

da zoyo + df (7) impedances satisfy, = —Z_ and, forsy, = 0, the propagation
2zoddy — zd2 + y=2 coefficients satisfyyy = —+—, in which case the self-dual waves
Zd = Zoyo + d2 (18) propagate symmetrically in both directions.
Yoddo — yd2 + =y If a section of transmission line has impedance parameétgrsan
Yo = — . (19) impedance load;, is seen through the section &s,1 from one end
“oyo +do and Zi,» from the other end. Their difference can be written as
It is easy to check that the parameter éet dq, z = zo andy = yo Z19 20
transforms to itself. The parameter= (a +b)/2 transforms to itself ~ £int — Zin2 = (Z11 = Z22) <1 - (Zn - Z0)(Zs, - Zzz))’ (28)

in all cases. Thus, the dual of a reciprocal line witk= 0 is always
reciprocalsq = 0. It is not possible to transform a nonreciprocal lin
to a reciprocal line.

It is seen that this difference vanishes #r, = Z-», which is valid
For do = 0 [8]. Thus, the line is symmetric even ify # —y_,
because the wave goes in both directions when reflecting back from
the end of the line.
B. Self-Dual Quantities

By definition, the reference transmission line with the parametegs The Conventional Line
Zo, Yo, a0 = so+do andby = sg — do IS invariant, or self dual, with
respect to the two transformations (12). Let us now find the self-dual
voltage and current function$y, I+ andU_, I_ in the reference apo =bo =0 z0=jwl yo=jwc (29)
line satisfying the two equations:

For a conventional lossless self-dual transmission line with

where( and ¢ denote real series inductance and shunt capacitance

> <U:t> <U:I:> 20) per unit length, the complex propagation coefficients are
+ = -

fe )\ T4 = £ /Fo0 = HjeVic (30)
Any voltage and current combination can be written in its self-duabrresponding to propagation iaz directions on the line. The wave
parts as impedances become

()= () oo =t
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which is another familiar formula. The duality transformation matrivwe can solve for the real parameter

ces have the simple appearance in this special case

0 Z L
D¢:i< 0)’ Zo =Y, ' = =0/ yo.

Yy 0 (32)

I1l. A PPLICATIONS

_Zi -7

Sy 1)

The valueZ, is still open. If the original load impedance %, its

Duality is a basic principle that can be readily applied to transforgy,a is
transmission-line problems to other transmission-line problems. Let

us consider two simple examples.

A. Transformation to a Conventional Line

A nonsymmetric transmission line witdh # 0 can always be
In fact, setting

transformed to a symmetric one witth, = 0.

wZr + Zy
Ld T 0

212} — ZL 78 + 22, 75
27,7y — Z2 + 72

(42)

By varying the real positiveZ, we see the range of possible load

d4 = 0in (17), we obtain a relation for the reference-line parametet@pPedancesZ,.«, which can be matched through the dual network.

Z0, Yo, do,

do(zyo + yzo + ddo) — zoyod = 0. (33)

The parameters (18) and (19) of the transformed line are then
d

zg=—z+ 20—
do

(34)

d
Ya = —Y + Yo T (35)
0
We are free to choose the parameteysand yy, after whichd, is

obtained from (33). For example, the choige= =, yo = v gives us

do =2 (VI+ @[y -1) (36)
and
za =z 1+d?/zy, ya=y/1+d?/zy. (37)

The wave impedances are transformed in simple form

Z:I::l(dzl: Zy-l-d?)_’Zdi:i,/ﬁ:i\/z (38)
Y Yd y

On the other hand, since the parameteis not transformed to

zero, the propagation factors satisfy # —v— whens # 0 and

~v+ = —v— whens = 0, both before and after the transformation.

B. Impedance-Matching Network

As another example we may consider impedance matching b[;}]
means of a conventional lossless stub network [11], which trans-

forms the load impedanc&; to a resistive impedanc&;. The

transformation rule for the impedance is the same for both duality

transformations. Assuming that the reference line is reciprocat

0) and losslessz(, andyy are imaginary andiy = —bo = 2dy is
real), we can write the impedance transformation tile+ Z; as
doZ + 20
Zj= ——"—.
? 'on bl (lo (39)

For example, ifZy = Z,, we haveZr, = Z} /7.

IV. CONCLUSION

Duality transformation has been introduced to the theory of trans-
mission lines involving generalized (nonsymmetric and nonrecip-
rocal) transmission lines, recently introduced in the literature. It
was seen that there exist two duality transformations that differ by
the sign from each other. They can be defined by requiring that
a certain transmission line (the reference line) is invariant in the
transformations. Self-dual voltage and current functions were seen to
be the voltage and current waves on the transmission line. The dual
of a nonreciprocal line is always nonreciprocal, but a nonsymmetric
line can be transformed to a symmetric line. Since duality is one
of the basic properties of transmission lines, it can be applied to
transmission-line problems in general. A matching transmission-line
circuit is discussed as an example.
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