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transmission system. The method’s feasibility was confirmed with a
design example. The actual composite multilayer glass characteristics
depend on the accuracy of the thickness and refractive index of
the layers, especially for cases where a large number of layers are
involved.
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Duality Transformation for Nonreciprocal
and Nonsymmetric Transmission Lines

Ismo V. Lindell and Ari H. Sihvola

Abstract—Duality transformation is introduced to the theory of gen-
eralized (nonreciprocal and nonsymmetric) transmission lines making
it possible to find solutions to problems in terms of solutions to dual
problems without having to go through the solution process. The gen-
eralized transmission lines have emerged when more general media
have been introduced to classical waveguide geometries, for example,
microstrip lines on chiral substrates. It is seen that there actually exist two
duality transformations and the self-dual voltage and current solutions
are propagating waves in the transmission line. The transformation can
be, e.g., applied to transform a nonsymmetric transmission line to a
symmetric one.

I. INTRODUCTION

Duality transformation in electromagnetic theory is based on
the symmetry of electric and magnetic quantities in the Maxwell
equations. It can be applied to obtain a solution for the dual problem
through transforming the solution of the original problem [1]. A
careful study for fields and sources in isotropic media showed that
there are always two duality transformations of equal importance,
[2], [3], and that there exist self-dual quantities invariant to the trans-
formation, which have special physical significance. The theory was
later generalized to bi-isotropic media [4] and certain bi-anisotropic
media [5].

In circuit theory, the concept of duality has been applied to trans-
form voltages to currents, impedances to admittances, inductances
to capacitances, and series circuits to parallel circuits, for example
[6], [7]. In transmission-line theory, the line parameters are changed
correspondingly in the transformation. It is the purpose of this paper
to define the duality transformation to the generalized transmission-
line theory introduced recently [8], [9], applicable, e.g., to planar
transmission lines on chiral and bi-isotropic substrates [10].
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II. THEORY

Let us consider a transmission line with time–harmonic (complex)
currentI(x) and voltageU(x) functions satisfying the generalized
transmission-line equations

d

dx

U(x)
I(x)

+
a z

y b

U(x)
I(x)

=
u(x)
i(x)

: (1)

Here we denote the distributed transmission-line circuit parameters
by a; z; y; b and the distributed series generator voltage and
shunt generator current functions byu(x) and i(x), respectively.
The quantitiesz and y are the distributed series impedance and
shunt admittance, respectively.a and b are parameters defining the
symmetry and reciprocity of the line [8]. In fact,a = b implies
that the impedance parameters of a line section satisfy the symmetry
condition Z11 = Z22. On the other hand,a = �b implies that
the impedance parameters satisfyZ12 = Z21, whence the line is
reciprocal [11, p. 158]. The symmetric and reciprocal line with
a = b = 0 is called the conventional transmission line.

It was also seen [8] that the line is lossless if the parameters satisfy

z
� = �z y

� = �y a
� = �b b

� = �a: (2)

If we define

a = s+ d b = s� d s =
a+ b

2
d =

a� b

2
(3)

the quantitiesz; y; and s are seen to be imaginary whiled is real
for a lossless transmission line.

A. The Duality Transformation

The duality transformation is a linear map of the voltage–current
pair

Ud

Id
= D

U

I
=

A B

C D

U

I
(4)

whereA � � �D are constant (complex) scalar quantities. Operating (1)
by the matrixD, we can write the transmission-line equation for the
transformed line. The transformation rules for the sources are, then

ud
id

=
A B

C D

u

i
(5)

and those for the line parameters

ad zd
yd bd

=
A B

C D

a z

y b

A B

C D

�1

: (6)

Let us require that the duality transformation be an involution, i.e.,
D�1 = D, [3]. This gives a set of conditions for the parameters
A � � �D. Ignoring the trivial transformationsD = �I, where I
denotes the unit matrix, the conditions are

A = �D =
p
1�BC (7)

implying detD = �1. Let us introduce the notation

A = �D = sin � B = � cos � C = �
�1 cos � (8)

which takes care of the condition (7) and leaves us two parameters,
� and �.

Let us now specify the transformation parameters�; � by requiring
that a given transmission line (the reference line) with parameters
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a0; z0; y0; b0 be transformed to itself. This condition can be written
as the matrix equation:

sin � � cos �

��1 cos � � sin �

a0 z0
y0 b0

=
a0 z0
y0 b0

sin � � cos �

��1 cos � � sin �
: (9)

The four component equations can be seen to give twice the same two

�
2
=

z0

y0
tan � = �

a0 � b0

2z0
=

�d0

z0
(10)

which can be solved as

�� = � z0

y0
tan �� = � d0p

z0y0
: (11)

Thus, there are actually two duality transformations that satisfy the
given conditions

D� =
�1

z0y0 + d20

d0 z0
y0 d0

: (12)

The two duality transformationsD+ andD� differ only by the sign.
The transformation formulas for the line parameters are the same

for both signs and can be written as

sd = s (13)
ddp
z0y0

= � dp
z0y0

cos 2� +
z

2z0
+

y

2y0
sin 2� (14)

zd

z0
=

dp
z0y0

sin 2� � z

z0
sin

2
� +

y

y0
cos

2
� (15)

yd

y0
=

dp
z0y0

sin 2� +
z

z0
cos

2
� � y

y0
sin

2
�: (16)

In terms of the reference-line parameters we have

dd =
d0(zy0 + yz0 + dd0)� z0y0d

z0y0 + d20
(17)

zd =
2z0dd0 � zd20 + yz20

z0y0 + d20
(18)

yd =
2y0dd0 � yd20 + zy20

z0y0 + d20
: (19)

It is easy to check that the parameter setd = d0; z = z0 andy = y0
transforms to itself. The parameters = (a+ b)=2 transforms to itself
in all cases. Thus, the dual of a reciprocal line withs = 0 is always
reciprocalsd = 0. It is not possible to transform a nonreciprocal line
to a reciprocal line.

B. Self-Dual Quantities

By definition, the reference transmission line with the parameters
z0; y0; a0 = s0+d0 andb0 = s0�d0 is invariant, or self dual, with
respect to the two transformations (12). Let us now find the self-dual
voltage and current functionsU+; I+ andU�; I� in the reference
line satisfying the two equations:

D� U�
I�

=
U�
I�

: (20)

Any voltage and current combination can be written in its self-dual
parts as

U

I
=

U+

I+
+

U�
I�

(21)

with

U�
I�

=
1

2
(I +D�) U

I

=
�1


+ � 
�


� � b0 z0
y0 
� � a0

U

I
(22)


� = s0 � z0y0 + d20 (23)

as is readily seen. Outside the sources, the self-dual voltage and
current satisfy

U� = Z�I�; Z� =
1

y0
d0 � z0y0 + d20 =

g� � b0

y0
(24)

I� = Y�U�; Y� =
1

z0
�d0 � z0y0 + d20 =

g� � a0

z0
: (25)

Thus, the transmission-line equations for the self-dual quantities
outside the sources are

d

dx

U�
I�

= � a0 z0
y0 b0

U�
I�

= � a0 + z0Y� 0

0 b0 + y0Z�

U�
I�

= �
� U�
I�

(26)

where Z� and Y� are the wave impedances and admittances,
respectively. The expressions
� defined in (23) represent complex
propagation coefficients. The self-dual voltage and current satisfy
the same first-order differential equations and their solutions are
exponential functions:

U�(x) = U�(0)e
�
 x

I�(x) = I�(0)e
�
 x

: (27)

Thus, the self-dual voltage and current functions are waves propagat-
ing in opposite directions on the transmission line.

From the above expressions it is seen that the parametersa0 and
b0 affect the wave impedancesZ� only through their difference,
i.e., through the parameterd0. On the other hand, the propagation
coefficients
� depend both ons0 and d0. For d0 = 0, the wave
impedances satisfyZ+ = �Z� and, for s0 = 0, the propagation
coefficients satisfy
+ = �
�, in which case the self-dual waves
propagate symmetrically in both directions.

If a section of transmission line has impedance parametersZij , an
impedance loadZL is seen through the section asZin1 from one end
andZin2 from the other end. Their difference can be written as

Zin1 � Zin2 = (Z11 � Z22) 1� Z12Z21

(ZL � Z11)(ZL � Z22)
: (28)

It is seen that this difference vanishes forZ11 = Z22, which is valid
for d0 = 0 [8]. Thus, the line is symmetric even if
+ 6= �
�,
because the wave goes in both directions when reflecting back from
the end of the line.

C. The Conventional Line

For a conventional lossless self-dual transmission line with

a0 = b0 = 0 z0 = j!` y0 = j!c (29)

where ` and c denote real series inductance and shunt capacitance
per unit length, the complex propagation coefficients are


� = �pz0y0 = �j!
p
`c (30)

corresponding to propagation in�x directions on the line. The wave
impedances become

Z� = � z0

y0
= � `

c
(31)
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which is another familiar formula. The duality transformation matri-
ces have the simple appearance in this special case

D� = �
0 Z0

Y0 0
; Z0 = Y

�1

0 = z0=y0: (32)

III. A PPLICATIONS

Duality is a basic principle that can be readily applied to transform
transmission-line problems to other transmission-line problems. Let
us consider two simple examples.

A. Transformation to a Conventional Line

A nonsymmetric transmission line withd 6= 0 can always be
transformed to a symmetric one withdd = 0. In fact, setting
dd = 0 in (17), we obtain a relation for the reference-line parameters
z0; y0; d0;

d0(zy0 + yz0 + dd0)� z0y0d = 0: (33)

The parameters (18) and (19) of the transformed line are then

zd = �z + z0
d

d0
(34)

yd = �y + y0
d

d0
: (35)

We are free to choose the parametersz0 and y0, after whichd0 is
obtained from (33). For example, the choicez0 = z; y0 = y gives us

d0 =
zy

d
1 + d2=zy � 1 (36)

and

zd = z 1 + d2=zy; yd = y 1 + d2=zy: (37)

The wave impedances are transformed in simple form

Z
�
=

1

y
d� zy + d2 ! Zd� = �

zd

yd
= �

z

y
: (38)

On the other hand, since the parameters is not transformed to
zero, the propagation factors satisfy
+ 6= �


�
when s 6= 0 and


+ = �

�

whens = 0, both before and after the transformation.

B. Impedance-Matching Network

As another example we may consider impedance matching by
means of a conventional lossless stub network [11], which trans-
forms the load impedanceZL to a resistive impedanceZ1. The
transformation rule for the impedance is the same for both duality
transformations. Assuming that the reference line is reciprocal(s =

0) and lossless (z0 and y0 are imaginary anda0 = �b0 = 2d0 is
real), we can write the impedance transformation ruleZ ! Zd as

Zd =
d0Z + z0

y0Z � d0
: (39)

It is easy to see that the inverse transformation obeys the same rule.
The dual of the matching network is another matching network

with impedances changed according to the above rule. In particular,
short circuitZ = 0 is transformed to the load impedance�z0=d0,
which is imaginary for a lossless reference line (z0 imaginary andd0
real) and corresponds to a certain capacitive load. Correspondingly,
open circuitZ = 1 is transformed to the impedanced0=y0.

Let us require that the dual network matches the same real
impedanceZ1 as the original one, i.e.,Z1 is a self-dual impedance.
This gives us a condition to the transformation parameters

Z
2

1 � 2�Z0Z1 � Z
2

0 = 0 � =
d0

p
z0y0

Z0 = z0=y0: (40)

We can solve for the real parameter�

� =
Z2
1 � Z2

0

2Z0Z1
: (41)

The valueZ0 is still open. If the original load impedance isZL, its
dual is

ZLd = Z0
�ZL + Z0

ZL � �Z0
=

ZLZ
2
1 � ZLZ

2
0 + 2Z1Z

2
0

2Z1Z0 � Z2
1 + Z2

0

: (42)

By varying the real positiveZ0 we see the range of possible load
impedancesZLd, which can be matched through the dual network.
For example, ifZ0 = Z1, we haveZLd = Z2

1=ZL.

IV. CONCLUSION

Duality transformation has been introduced to the theory of trans-
mission lines involving generalized (nonsymmetric and nonrecip-
rocal) transmission lines, recently introduced in the literature. It
was seen that there exist two duality transformations that differ by
the sign from each other. They can be defined by requiring that
a certain transmission line (the reference line) is invariant in the
transformations. Self-dual voltage and current functions were seen to
be the voltage and current waves on the transmission line. The dual
of a nonreciprocal line is always nonreciprocal, but a nonsymmetric
line can be transformed to a symmetric line. Since duality is one
of the basic properties of transmission lines, it can be applied to
transmission-line problems in general. A matching transmission-line
circuit is discussed as an example.
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